Analysis of Semi-Supervised Methods for Facial Expression Recognition
Official Code for Analysis of Semi-Supervised Methods for Facial Expression Recognition. The paper has been accepted in Affective Computing and Intelligent Interaction (ACII), 2022.
Dataset
We used the following dataset
Once the dataset is downloaded use the scripts in datasets/preprocessing
to preprocess the dataset.
The porcessed dataset structure should look like this:
dataset
├── train
│ ├── class_001
| | ├── 1.jpg
| | ├── 2.jpg
| | └── ...
│ ├── class_002
| | ├── 1.jpg
| | ├── 2.jpg
| | └── ...
│ └── ...
└── val
├── class_001
| ├── 1.jpg
| ├── 2.jpg
| └── ...
├── class_002
| ├── 1.jpg
| ├── 2.jpg
| └── ...
└── ...
Run
Modify the config files in config/
directory if needed.
python [ALGO_NAME].py --c [CONFIG_FILE]
Results
Acknowledgements
The semi-supervised algorithm implementations are followed from the following repository: TorchSSL
Citation
Please cite our paper if you this code repo in your work.
@inproceedings{roy2022analysis,
title={Analysis of Semi-Supervised Methods for Facial Expression Recognition},
author={Roy, Shuvendu and Etemad, Ali},
booktitle={2022 10th International Conference on Affective Computing and Intelligent Interaction (ACII)},
pages={1--8},
year={2022},
organization={IEEE}
}
Contact
Thanks for your attention! If you have any suggestion or question, you can leave a message here or contact us directly:
- shuvendu.roy@queensu.ca